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Internal solitary wave breaking and run-up on a 
uniform slope 
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Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA 

(Received 23 August 1991 and in revised form 18 February 1992) 

Laboratory experiments have been conducted to study the shoaling of internal 
solitary waves of depression in a two-layer system on a uniform slope. The shoaling 
of a single solitary wave results in wave breaking and the production of multiple 
turbulent surges, or boluses, which propagate up the slope. Significant vertical 
mixing occurs everywhere inshore of the breaking location. The kinematics of the 
breaking and bolus runup are described and a breaking criterion is found. The 
energetics of the breaking are investigated. Over the range of parameters examined, 
15 ( & 5 )  % of the energy lost from first-mode wave motion inshore of the break point 
goes into vertical mixing. 

1. Introduction 
The common occurrence of large-amplitude internal waves in coastal regions and 

straits (Fu & Holt 1982) makes their dynamics of interest. In coastal regions the 
usual description is of a packet of several first-mode waves propagating on the main 
pycnocline towards shallower water. There is little evidence of reflection, so all of the 
incident energy must be dissipated in the shoaling process. The manner in which this 
dissipation takes place is important since wave instabilities and breaking can lead to 
vertical mixing and the redistribution of nutrients (Haury, Briscoe & Orr 1978; 
Sandstrom & Elliott 1984). Sandstrom & Elliott (1984) estimate that if 10Y0 of the 
incident energy flux goes into vertical mixing, then just several large waves per tidal 
cycle provide enough mixing to supply all of the required nutrients to the euphotic 
zone on the Scotian Shelf. Chapman et al. (1991) report evidence of run-up of dense 
water onto the shallow shelf of Palawan Island in the Sulu Sea produced by the 
breaking of large internal waves. However, details of the wave breaking, both 
kinematics (i.e. where breaking occurs) and dynamics (i.e. energy conversion to 
mixing), are not well known. 

The usual approach for describing long internal wave evolution in coastal regions 
has employed Korteweg-de Vries (KdV) theory. The theory assumes a balance 
between weak nonlinearity and weak dispersion. It is this balance which results in 
the familiar solitary waves. In a two-layer system the solitary wave is a wave of 
elevation (depression) for d+/d-  > 1 (< l),  where d, and d- are the depths of the 
upper and lower layers respectively. KdV theory has compared favourably with 
observed wave characteristics for both field data (Osborne & Burch 1980; Sandstrom 
& Elliott 1984) and laboratory experiments (Segur & Hammack 1982; Helfrich & 
Melville 1986) in cases where the waves are stable. A major limitation of KdV theory 
is that it does not permit breaking (Whitham 1974) and therefore is of limited value 
in describing wave instabilities. 
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Issues of internal solitary wave stability over topography have been addressed in 
several laboratory experiments. Kao, Pan & Renouard (1985) studied the 
propagation of internal solitary waves in a two-layer system over slope-shelf 
topography. The upper layer was always shallower than the lower layer so that 
solitary waves of depression could exist everywhere. They found that as a solitary 
wave moved up the slope its rear face steepened. In the vicinity of the shelf break the 
rear face became unstable and mixing occurred. The instability was attributed to 
interfacial shear. 

Helfrich & Melville (1986, hereafter referred to as HM) also examined the 
propagation of first-mode solitary waves over slope-shelf topography. In contrast to 
Kao et al. (1985), they considered the situation where the relative layer depths 
change as the wave moves from a deep region ( d ,  < d - )  over a uniform slope onto the 
shelf ( d ,  > d - ) .  As the incident wave of depression propagates up the slope it will 
encounter a point where d ,  = d- (the turning point), past which it can no longer exist 
as a wave of depression. Numerical solutions of an extended KdV equation for this 
‘turning point’ geometry show that the incident wave scatters into a packet of 
oscillatory waves from which one or more solitary waves of elevation emerge 
(Helfrich, Melville & Miles 1984). In corresponding laboratory experiments HM 
found that the incident wave could be unstable in the neighbourhood of the shelf 
break. Instabilities lead to localized vertical mixing. 

Cacchione & Southard (1974) and Wallace & Wilkinson (1988) studied the 
breaking and runup of periodic internal waves in a two-layered system on a uniform 
slope. Both studies considered the case where the lower layer was always shallower 
than the upper layer. Therefore, no turning point was encountered. Wallace & 
Wilkinson (1988, hereafter refered to as WW) found that as the waves shoaled they 
steepened into an approximately periodic train of solitary waves of elevation. 
Eventually the rear face of each wave would steepen and overturn. The overturning 
produced one turbulent vortex, or bolus, of dense water that propagated up the slope 
until it was eventually dissipated by friction and the continual drainage of mixed 
fluid back down the slope. They observed that breaking was initiated by the 
interaction of the incident wave with the return flow from the preceeding wave. WW 
estimated, but did not measure, that about 3 % of the incident energy was converted 
to a potential energy increase of the water column in the breaking and run-up region. 

Cacchione & Wunsch (1974) and Ivey & Nokes (1989) conducted laboratory 
experiments on the shoaling of periodic internal waves in a continuously stratified 
fluid on a uniform slope. Wave interaction with the slope produced instabilities and 
mixing in the bottom boundary layer over the slope. Mixing was most intense when 
the slope was a t  the critical angle. 

In this paper the results of laboratory experiments on the breaking and run-up of 
solitary waves of depression in a two-layer system on a uniform slope are discussed. 
The incident wave in a single solitary wave of depression which must encounter a 
turning point somewhere on the slope. This is the usual situation in coastal regions 
and has not been examined in the previous uniform slope experiments. The 
interaction of topographic scattering of the incident wave, produced by passage 
through the turning point, and run-up on the uniform slope leads to new results. 

The experimental set-up and relevant parameters are described in $2. The results 
are presented in $3. The kinematics of the breaking and run-up are described. In 
particular, a breaking criterion is found. Measurements of the energetics show that 
the wave breaking is efficient in producing vertical mixing. The results are discussed 
in $4. 
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2. Experimental set-up and parameters 
The experiments were conducted in a glass-walled wave tank 0.65 m deep, 0.40 m 

wide, and 18 m long (see figure 1). A uniform slope was fabricated using sections of 
plate-glass which were sealed to the tank walls. A two-layered salt-stratified system 
was constructed by filling the tank to the desired lower layer depth with salt water 
of specified density. Prior to adding a layer of fresh water, both the fresh water and 
the salt water were allowed to sit overnight to allow them to come into thermal 
equilibrium with the laboratory. The fresh water was then slowly spread over the salt 
water. This produced a two-layer system with an interfacial thickness of 1.5-2 cm 
(see figure 16). 

Interfacial solitary wave generation and measurement were similar to those 
described in HM. Interfacial solitary waves were generated using a stepping-motor- 
driven flap-type wave maker situated in the interface. The flap motion was 
programmed to give layer mass fluxes that approximate the passage of a single 
solitary wave. Precision Measurement Engineering micro-scale conductivity- 
temperature probes (Model 125) were used to measure basic-state density profiles 
and interfacial displacements. Positioning and profiling of the probes was done with 
computer-controlled stepping motors. Water samples of known densities (measured 
with a precision electronic densiometer) were used to calibrate the conductivity 
probes. 

Three probes were used in an experimental run. The first was located at the 
beginning of the slope (5-7 m from the tip of the wave maker), the second was located 
inshore of the turning point and the third was positioned at  the undisturbed 
interface-slope intersection, approximately 0.5 cm above the bottom. 

Interfacial displacements at the first two probes were calculated assuming lowest- 
mode motion. Prior to a run, the probes were positioned within the interfacial region. 
Measured time series of conductivity were converted to equivalent vertical 
displacements of the static conductivity profiles. This method was used successfully 
by HM who estimated the error in measured displacements to be less than 10 YO. The 
third probe was used to measure the density signal produced by the run-up process. 

Side-view photographs and video recordings of shadowgraphs and dye movement 
were used to obtain quantitative information on the kinematics of breaking and 
run-up. 

For all the experiments, the layer depths before the slope were the same: 
d, = 10 cm and d- = 26 cm. Slopes s of 0.034, 0.050 and 0.067, and relative layer 
density differences 

AP - P+-P- -- - 
P P+ 

of 0.012 and 0.024 were examined. Here p+ ( p - )  is the density of the upper (lower) 
layer. Incident solitary waves of amplitudes a, = -0.7 to -3.4 cm, measured at the 
beginning of the slope, were studied. Here the amplitude a,, is the maximum vertical 
displacement of the interface. 

The important independent non-dimensional parameters in addition to A p l p  and 
dJd- are the nonlinearity parameter 

a0 
(d, +a_) ’ a =  
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FIGURE 1.  Experimental set-up. 

based on the wave amplitude and total depth a t  the beginning of the slope, and the 
topography parameter 

h = (kL)- l .  ( 2 )  

Here h is the ratio of the wave lengthscale k-' to the distance L = d-s-' from the 
beginning of the slope to the undisturbed interface-slope intersection. For these 
experiments k-' is taken from the relation for the wavelength of a KdV solitary wave 
in a two-layer system (Segur & Hammack 1982), 

The experiments cover the range a = [ -0.02, -0.0931 and h = [0.05, 0.201. The 
incident waves are weakly nonlinear and the slopes are long with respect to the 
wavelength. Since a and h are the same order of magnitude, nonlinear and 
topographic influences are comparable. These scalings are consistent with oceanic 
observations (HM). 

3. Experimental results 
Figure 2 shows the interfacial displacements r ( t ) ,  normalized by -ao, a t  x / L  = 0 

( x  = 0 is taken to  be a t  the start of the slope) and a t  x / L  = 0.67 for an experiment 
with a = -0.052, h = 0.105, s = 0.050 and Ap/p = 0.0241. The second probe is just 
inshore of the turning point ( x / L  = 0.62). Also shown is the density p ( t )  recorded by 
the probe positioned a t  the undisturbed interface-slope intersection. Time has been 
normalized by COIL, where 

is the linear phase speed a t  the beginning of the slope and g is the acceleration due 
to  gravity. At x / L  = 0 (figure 2a) an isolated solitary wave of depression is observed. 
At x/L = 0.67 the leading face of the wave has lengthened and the rear face has 
steepened. The long, low-amplitude disturbance immediately following the steepened 
wave between tc,/L = 2.6 and 4.0 is a reflected wave. It appears at the beginning of 
the slope (figure 2 a )  between tc,/L = 3.5 and 4.5. The density record a t  the 
interface-slope intersection, x / L  = 1.0, shows that wave shoaling results in a slow 
decrease in density as the leading face of the incident wave moves up the slope. This 
corresponds to a down-slope movement of the interface-slope intersection. This is 
followed by four distinct rises in density and an irregular return to the initial density. 
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Side-view shadowgraphs from the same experiment are presented in figure 3. In 
frame ( a )  the elongated leading face of the wave is parallel to the bottom slope, 
leaving a thin layer of interfacial fluid on the slope. Breaking occurs on the rear face 
of the incident wave and results in the generation of turbulence and interfacial 
mixing (frames b and c ) .  Several discrete turbulent surges, or boluses, propagate up 
the slope past the interface-slope intersection (frames c-g). At the undisturbed 
interface-slope intersection the boluses contain lower-layer water which has been 
slightly diluted by mixing (see figure 2c). Interfacial mixing occurs everywhere 
shoreward of the breaking location and is enhanced by the run-up of the boluses, 
which continue to entrain upper-layer water as they move up the slope. 

A second-mode interfacial solitary wave (Davis & Acrivos 1967 ; Benjamin 1967) 
is occasionally generated by the breaking and is observed to propagate offshore. 
These waves are characterized by isolated varicose perturbations of the pycnocline. 
An example of such a wave is noted by the arrows in frames ( f )  and (9) .  These waves 
decayed rapidly and were never observed to propagate back to the beginning of the 
slope. No systematic attempt was made to identify them in individual runs. 

Figure 4 shows another example of wave breaking and run-up for a larger incident 
wave, a = -0.094. Both s and Aplp are the same as in figure 3. The breaking and run- 
up are similar to the observations for the smaller wave; however, the breaking 
location has moved further offshore and the mixing is more intense. The boluses are 
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FIGURE 3. Shadowgraphs of wave breaking and runup for the run in figure 2. The thin, dark vertical 
stripe on the right is the conductivity probe at the interface-slope intersection. (a )  tc,/L = 2.64, ( b )  
2.74, (c) 2.84, ( d )  2.94, ( e )  3.04, (f) 3.14, ( 9 )  3.24. The times correspond to those in figure 2. The 
arrows in (f) and (9)  indicate the location of a second-mode wave. 

larger and propagate further up the slope before they are dissipated. As the slope 
decreases the strong overturning is not as dominant, although significant interfacial 
mixing does occur. The initial breaking occurs further offshore as the slope decreases, 
so that the mixing takes place over a larger extent than for a wave of the same 
amplitude on a steeper slope. 

Photographs of mixing and transport of dye due to breaking and run-up are shown 
in figure 5 for a run with (a ,A ,s ,Ap /p )  = (-0.075, 0.118, 0.067, 0.0245). The 
horizontal stripe of dye marks the pycnocline and a patch of dye was introduced in 
the lower layer about 90 cm before the interface-slope intersection. Dye was also 
placed on the bottom a t  the positions indicated by the arrows in frame (a) .  As the 
incident wave shoals it sweeps the dye in the lower layer offshore and out of view 
(frame b) .  As the wave breaks the dye on the bottom is quickly mixed throughout the 
lower layer (frames b and c ) .  Interfacial and upper-layer water is mixed down into the 
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FIGIJRE 4. Shadowgraphs for a run with a larger incident wave. (a, A,  s, Ap/p) = ( -  0.094, 0.078, 
0.050, 0.0241). The time between frames is 4 s .  

lower layer. The boluses transport this mixed fluid up the slope (frames di). Frame 
(j) shows the dye distribution after the surge activity has ceased. Mixed fluid is 
moving offshore as an intrusive layer in the lower part of the original pycnocline. The 
patch of dye that was swept offshore has returned to a position slightly inshore of its 
original location indicating a net onshore flux of lower layer fluid as a result of the 
breaking and run-up. 

3.1. Kinematics 

The breaking is qualitatively similar to the breaking observed in HM for waves 
incident on a slope-shelf geometry. The strong down-slope flow in the lower layer, 
caused by the advancing front face of the incident wave, and up-slope flow 
immediately behind the rear face, leads to a large horizontal velocity convergence in 
the lower layer underneath the steepened rear face. Thus, lower-layer vertical 
velocities are large in this region. Furthermore, the strong flows increase the 
interfacial shear. HM measured lower-layer particle velocities of the same order as 
the wave phase speed in the breaking region. Although systematic velocity 
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-100cm - 

FIGURE 5. Mixing J and up-slope transport of dye for a run with (a,A,s,Ap/p) = (-0.075, 0.118, 
0.067, 0.0245). Frame (a) was taken before wave generation. The time between frames from ( b )  to 
(i) is 4 s .  Frame (j) was taken 26 s after frame (i). 

measurements were not undertaken in the present experiments, observations of 
neutral-density particles showed that lower-layer velocities were comparable with 
the local wave phase speed during the breaking events. 

The location of the wave instability, or break point, was defined as the maximum 
offshore location of the initial patch of turbulence. The shadowgraph images were 
used to identify this location. From these observations a breaking criterion was 
determined and is shown in figure 6 where -a,Jd-Bp is plotted against A. Here d-Bp 
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FIGURE 6. Breaking location (criterion): +, s = 0.034; 0,  0.050; m, 0.067. The error bars 
represent the uncertainty in the measurements. 

is the undisturbed lower-layer depth at the break point and a, is the wave amplitude 
measured a t  the beginning of the slope (probe C, in figure 1). Over the range of 
parameters examined, breaking occurs where the undisturbed lower-layer depth is 
about 2-3 times a,. There is a tendency for -aO/LBp to increase as A decreases. 
Decreasing A corresponds to decreasing the slope (increasing L )  or increasing the 
incident wave amplitude, since k-l decreases as -a, increases (see (3)). Larger waves 
tend to propagate into slightly shallower water (relative to their initial amplitude) 
before breaking than do smaller waves. 

Figure 6 includes data from experiments with Aplp = 0.012 and 0.024. There was 
no systematic difference due to Ap/p in this and other observations, except for wave 
and bolus propagation speeds. However, the propagation speed differences could be 
scaled by the density difference. Henceforth, all the data will be grouped together 
and differences in Ap/p will not be noted. 

The breaking criterion in figure 6 is similar to the one found in HM for internal 
solitary waves incident on slope-shelf topography. They found that for 

-a,/d+ 5 0.3, 

where d-, is the depth of the lower layer on the shelf, the incident wave would 
move on to the shelf with no instabilities. For - a,,/d-, 2 0.4, strong overturning and 
second-mode wave generation occurred in the neighbourhood of the shelf break. For 
0.3 < -a,/d-, < 0.4 weaker interfacial shear instabilities were observed. Their 
results were not dependent upon A for A = 0.1-0.3. The new results for a uniform 
slope are consistent with these results, suggesting that the mechanism is similar. 

The maximum run-up of mixed fluid past the undisturbed interface-slope 
intersection X, is plotted against -a, in figure 7 .  The runup is approximately a 
linear function of incident amplitude and independent of the bottom slope. The best 
fit to the data, X, = 1.14-18.9a0, where a, and X, are given in cm, is also shown. 
The total distance of mixing and bolus activity XT can be defined as 

where 
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FIGURE 7. Maximum runup past the undisturbed interface-slope intersection : 

+, s = 0.034; 0,  0.050; m, 0.067. 
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FIGURE 8. Location of boluses in (z, t )  space for the run shown in figures 2 and 3. 
Each symbol corresponds to one bolus. 

is the distance from the break point to the undisturbed interface-slope intersection. 
Taking -aO/dBp = 0.4 + O . l  from figure 6 and XR/( -ao) = 19 f 1 from figure 7, we 
get 

&/-ao  x 2.5~-'+ 19. (7)  

Since 2.5s-' > 19, most of the bolus runup, and therefore vertical mixing, occurs 
offshore of the undisturbed interface-slope intersection. 

Figure 8 shows an x-t diagram of bolus locations €or the experimental run in figures 
2 and 3. The times correspond to those in figures 2 and 3, and the distance x (positive 
onshore) from the undisturbed interface-slope intersection has been normalized by 
XBp. Points are plotted only when the boluses are clearly identifiable. The figure 
shows several features which are typical of all the experiments. The lead bolus is 
formed first and furthest offshore. Subsequent boluses form later and progressively 
up the slope. The number of boluses present at any one time is not constant. New 
boluses are formed as older ones dissipate. However, all appear before the 
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FIQURE 9. Number of boluses produced in a breaking event : + , s = 0.034; 0 ,  0.050; m, 0.067. 
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FIQURE 10. The initial height of the first bolus: +, = 0.034; 0,  0.050; El, 0.067. 

undisturbed interface-slope intersection and dissipate after passing through this 
location. The first bolus is often overtaken and absorbed by the second bolus, which 
may in turn be overtaken ; though this did not occur in this particular run. For all 
the runs, the initial speed of a bolus cBo x 0.6cOBP, where cOBp is the linear phase speed 
at  the break point (i.e. d- = d-Bp in (4)). 

Since all the boluses pass the undisturbed interfaceslope intersection, the total 
number of boluses produced by the breaking of a single incident wave, N B ,  was 
determined from the density recorded at this point. For example, the run in figure 
2(c)  shows the passage of four distinct surges, which is consistent with figure 8. In 
other runs, identification of boluses is not always as clear, so the determination of NB 
has an uncertainty of one. Figure 9 shows NB plotted against A. The data show that 
N B  increases rapidly as A decreases. Either increasing -uo, or decreasing the slope 
will result in an increase in the number of surges. 

The initial height of the first bolus formed after breaking, H,, is shown in figure 10 
where H o / (  -ao) versus h is plotted. Here H ,  is defined as the height of mixed fluid 
comprising the bolus and is measured immediately after the bolus is clear of the 
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breaking region. The data show H o / (  -ao) = 1.75 f0.25, with no clear dependence 
upon A. In all cases the first bolus was the largest. Subsequent boluses decreased in 
amplitude. 

The characteristics of the boluses observed here are similar to those described by 
WW for boluses produced by a train of internal solitary waves of elevation shoaling 
on a uniform slope (no turning point encountered on the slope). They found that each 
bolus had a self-preserving shape with an aspect ratio HII,  z 0.3, independent of 
bottom slope and incident energy flux. Here H is the height of the mixed core of the 
bolus and 1, is the length measured at  the bottom of the bolus core. They derived a 
simple analytical model in which the change in bolus momentum was balanced by 
down-slope buoyancy and bottom friction. Their model gives 

Here x is measured from the point of bolus formation, x, is the total runup distance 
(equal to X, given by ( 5 ) ) ,  c, is the bolus propagation speed, cBo is the initial speed, 
and 9 is a constant which depends upon a drag coefficient and other parameters (see 
equation (11) in WW). 

In figure 11 the aspect ratio H/E, of the first bolus produced during a breaking 
event is plotted against x / X , ,  for an incident wave amplitude a, = - 1.9 cm 
(a = -0.053). Data were obtained from analysis of shadowgraphs. H and 1, are 
defined as above. For all slopes HIE, x 0.3, although for s = 0.034 there is a tendency 
for H/1, to increase with x. This increase may be related to the reduction in the 
intensity of breaking (overturning and mixing) which occurs as the slope decreases. 
Data for the other incident wave amplitudes also give HIE, = 0.310.1 .  Second, 
and subsequent boluses also have HIl ,  z 0.3. However, measurements of the 
characteristics of these trailing surges have more uncertainty since the trailing 
surges are interacting with the wake of the preceeding boluses. 
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FIGURE 12. Decay of the first bolus height with distance for the runs in figure 11. 
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FIGURE 13. First bolus speed versus distance for the runs in figure 11. The solid lines correspond 
to  (9) with 4 = 0.25 and 0.65. 

Figure 12 shows the decay of the first bolus height with distance for the runs with 
a = -0.053. H / H ,  decreases approximately linearly as predicted by (8). Figure 13 
shows cB/cBo versus x / X ,  for the same runs as figure 12. Also shown is the model 
prediction (9) for 4 = 0.25 and 0.65. The value of 4 = 0.65 lies in the range 0.6-0.7 
that WW found gave the best fit to their data for run-up on slopes of 0.030 and 0.054. 
The value of 4 = 0.25 gives a prediction which is closer to the present experimental 
data. Both the linear decrease in bolus height and the slow initial decrease in bolus 
speed are found for all the incident wave amplitudes. 

The difference in q5 may be due to the effect of the upper layer on bolus evolution. 
In WW’s experiments the upper layer was deep (d, = 37.5 cm at the interface-slope 
intersection) so that bolus heights were very small relative to the upper-layer depth. 
Forced horizontal velocities in this layer would therefore be small. In  the present 
experiments the upper layer was shallow and bolus heights were a significant fraction 
of the total water depth in the run-up region. Boluses should interact strongly with 
the upper layer as they run up the slope. Furthermore, a solitary wave of depression 
has upper-layer velocities of order c, a,/d+ directed onshore. This wave-induced 
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upper-layer flow may affect the bolus runup, possibly by helping to advect them 
onshore. Upper-layer motion, accounted for in WW’s equation for $ by an added- 
mass coefficient, may be more important in the present experiments. Indeed, 
increasing the added-mass coefficient in WW’s theory causes q5 to decrease, 
consistent with these experiments. Also note from figure 13 that the first bolus speed 
does not decrease very much until x / X ,  = 0.G0.7. From (6) and (7 )  

X,, 2.5s-1 
X, 2.5s-’+ 19 

rv = 0.7-0.8 

for s = 0.067-0.034. The rapid decrease in bolus speed begins just before the bolus 
reaches the location of the undisturbed interfacc-slope intersection. 

3.2. Energetics 

Wave energy incident on the slope will be dissipated in either viscous boundary 
layers (bottom, sidewall and interfacial) or in breaking events, and some energy will 
be reflected. A fraction of the energy lost to breaking will go into vertical mixing, 
resulting in a net increase in the potential energy of the water column. This 
redistribution of wave energy can be examined from the experimental data. Of 
particular interest is the mixing efficiency of the wave breaking. The mixing 
efficiency, 2, is given by 

(10) 
z=-, U B P  

E N  

where APBp is the change in potential energy inshore of the break point and 

is the net energy into the breaking region. The net energy is composed of the onshore 
energy at the break point E,, and the reflected energy E,. The breaking region is 
defined to be everywhere inshore of the break point. 

The wave energy E per unit width through, or work on, a vertical section between 
times t,, and t, is given by 

where p ( z )  and u(z) are the wave-induced pressure and horizontal velocity 
respectively. Here p(z)  is the background vertical density profile, h is the water depth 
and z is the vertical coordinate, equal to zero at  the free surface. For long, weakly 
nonlinear waves (i.e. KdV approximation) in a two-layer system (12) becomes 

Here q(t) is the interfacial displacement a t  the location where E is to  be evaluated. 
Over the slope where the lower-layer depth is changing, d- and co are the local values 
of lower-layer depth and linear phase speed, respectively. The approximation leading 
to (13) is appropriate for these experiments and the errors introduced are within the 
experimental uncertainty. I n  calculating energy with (13) we are neglecting energy 
of second- or higher-mode waves. Although some second-mode waves were observed, 
their contribution to  the energy budget is insignificant. 

The incident energy E, is evaluated with ~ ( t )  measured a t  the beginning of the 
slope (x /L  = 0). The times t ,  and t ,  are chosen so that just the incident solitary wave 
is included in the evaluation of (13). 
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FIGURE 14. Theoretically computed fraction of incident energy at the break point: 
+, s = 0.034; 0, 0.050; m, 0.067. 

To evaluate E,, the fraction of incident wave energy lost to viscous dissipation 
between the beginning of the slope and the break point must be estimated. E,, is 
difficult to evaluate directly with the available data (i.e. from the second probe on 
the slope) because the incident and reflected waves are not clearly separated (i.e. the 
specification oft, is not obvious). For example, figure 2(b) shows that the incident 
and reflected waves are not completely separated a t  x /L  = 0.67. As an example, we 
take t ,  c,/L = 2.57 in figure 2 ( b )  then E / E ,  x 0.90, and about 10 YO of the incident 
energy is lost to viscous processes up to this point. However, the uncertainty is large 
and, as the slope or incident amplitude increases, the separation of the incident and 
reflected waves in the interfacial displacement record on the slope becomes even less 
well defined. 

HM showed that, in the absence of breaking, the KdV model including viscous 
boundary-layer dissipation gives good prediction of wave evolution and dissipation 
over slope-shelf topography. Wave dissipation due to viscous process was calculated 
to within 5 YO for evolution distances much longer than those considered here. Thus 
for evolution up to breaking the model can be used to estimate dissipation in the 
present problem. The model details and scaling requirements are given in Appendix 
A. The results were obtained for the experimental parameters (d+, d- ,  Aplp)  = 
(10 cm, 26 cm, 0.024), 0.067, and a kinematic viscosity of 
0.01 cm2 s-l. The initial conditions were solitary waves with amplitudes a, = -0.9, 
- 1.9, -2.6 and -3.3 cm at the beginning of the slope. The model was integrated up 
to the break point given by figure 6 for each value of A. 

Figure 14 shows the results of numerical calculations of the onshore energy 
transport at the break point EBP,  normalized by E,. Between 10 and 30% of the 
incident energy is dissipated on the slope prior to breaking. The fraction of energy 
dissipated increases as either s or -a, decreases. For the conditions of figure 2, 
A = 0.105 and s = 0.050, the model predicts E,,/E, = 0.85. At x /L  = 0.67 the model 
predicts E / E ,  = 0.91. This compares favourably with the value of 0.9 estimated 
above for the data in figure 2 at x / L  = 0.67. 

It was possible to evaluate the energy content of the reflected wave E ,  measured 
at the beginning of the slope. This was done by choosing t ,  and t,  so that only the 
reflected wave, always well separated from the incident wave, was included in 
the evaluation of (13). For example, in figure 2(a), t ,  and t ,  were chosen to be 

s = 0.034, 0.050 and 
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FIGURE 16. Density profiles inshore of the turning point before (-) and after (---) a run. 
(a,h,~,Ap/p) = (-0.094, 0.078, 0.050, 0.0241). 

t ,co/L = 3.25 and t ,co/L = 4.50. Figure 15, where ERIEo versus A is plotted, shows 
the results. There is an uncertainty in ERIEo of f 30 %, determined by varying t ,  and 
t ,  for a given run. The fraction of incident energy reflected increases as h increases 
(i.e. smaller wave amplitudes or steeper slopes) and reaches 0.24.25 for A = 0.15-0.2. 
The smallest slope ( 8  = 0.034) reflected only about 5 %  of the incident energy. 

Mixing produced by breaking and bolus runup lead to measurable changes in the 
potential energy of the system. Wave-induced mixing produced a thickened 
pycnocline inshore of the break point. It would then move offshore as an intrusion. 
To prevent the intrusion from spreading the length of the tank, where its effect on 
the background density profile would be undetectable, a vertical gate was inserted 
at the turning point after passage of the incident and reflected waves, but before the 
arrival of the mixed fluid. After all motion had ceased (x 15 minutes), several 
density profiles inshore and offshore of the gate were obtained. The time that the gate 
was in place was short enough so that the buoyancy flux driven by diffusive processes 
in the region where the pycnocline intersects the slope (Phillips 1970) was negligible. 
Profiles taken offshore of the gate showed no measurable differences from before and 
after a run. Differences in density profiles inshore of the gate were attributed entirely 
to wave breaking. Figure 16 shows a typical pair of density profiles from before and 
after a run. 
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Changes in potential energy (per unit width) in the region inshore of the turning 
point, MTp, were found from 

where APW = P f b )  - P A 4  (15) 

is the difference between the initial profile pi and the profile taken after breaking pf. 
Here 

B(z) ="(l+E) S 

is the horizontal extent of the triangular region at  a depth x .  Here z = 0 is the free 
surface and h = 2 4  is the total depth at  the turning point. 

The turning point was chosen for the gate location because it is a convenient 
division between onshore and offshore. However, to evaluate C from (10) the change 
of the potential energy inshore of the break poing MBp must be determined. Some 
potential energy is lost to kinetic energy, and ultimately viscous dissipation, as the 
mixed fluid spreads offshore from the breaking region to the gate. The potential 
energy change that would arise if all the mixed fluid had been confined to inshore of 
the break point is shown in Appendix B to be 

Mm = MTPXTPIXBP, (17)  

where XT, = d+s-' is the distance from the turning point to the interface-slope 
intersection and MTp is given by (14). There is an additional correction due to the 
sloping bottom, but it is small. 

The mixing efficiency (10) could then be evaluated. MBP from each run was 
calculated from (17) using messurements of MTp with X,, found from figure 6. The 
net energy (1 1) was determined as follows. The energy E,, was found using figure 14 
given measurements of E,  and the appropriate values of h and s. The energy reflected 
from the breaking region was set equal to the reflected energy measured a t  the 
beginning of the slope (figure 15). There is some dissipation of the reflected energy 
between the break point and the beginning of the slope. Corrections due to this effect, 
using figure 14, change estimates of C by about 3% which is well within the 
uncertainty of the rest of the data. Measurements of MBp are accurate to f 25 % 
based upon variations in hpBp from the several density profiles taken after each run. 
Incident energy E,  measurements are accurate to f 10 YO. Estimates of dissipation 
of incident energy on the slope are good to * 5 %  and the reflected energy E ,  is 
estimated to * 30 YO. These possible errors result in a maximum uncertainty for each 
calculated value of Z of & 50 YO. 

Figure 17 shows the mixing efficiency for all the runs in which potential energy 
changes were measured. The average value for all the data points is Z = 0.15. The 
scatter of the data ( f 0.05) is consistent with the estimated uncertainty. Dependence 
of Z on h or other parameters cannot be discerned. The average value Z = 0.15 0.05 
is the principal result. 

3.3. MuEtiple incident waves 
Finally we note that in the coastal regions the large internal waves incident on the 
slopes typically occur as groups of nonlinear waves rather than isolated solitary 
waves. To examine the effect of multiple waves several experiments were run with 
two solitary waves of the same amplitude, separated by several wavelength scales, 
incident on the slope s = 0.067. Figure 18 shows the measured displacements and 
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FIQURE 17. The mixing efficiency of wave breaking inshore of the break point : 
+, s = 0.034; 0, 0.050; m, 0.067. 
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density at the interface-slope intersection as functions of time for a run with 
(a, A,  s, Ap/p) = (-0.054,0.139, 0.067,0.0242). Breaking occurs at  the same location 
as the single wave. Interaction of the waves significantly changes the number and 
separation of the boluses from what might be anticipated based on superposition of 
two isolated waves. Measurements of energetics of the breaking for several multiple- 
wave runs giving mixing efficiencies within the range found for single-wave runs. 

4. Discussion 
The experiments show that an internal solitary wave of depression incident on a 

uniform slope will break and produce multiple boluses of primarily lower-layer water 
which propagate up the slope past the undisturbed interface-slope intersection. A 
breaking criterion was found and the kinematics of the breaking and bolus runup 
were described. The characteristics of individual boluses are similar to those 
described by WW; however, the production of multiple boluses per single incident 
wave occurs only for the case of solitary waves of depression (i.e. a turning point is 
present on the slope). 

The production of multiple boluses per incident wave can be understood as the 
result of topographic scattering of the incident wave and subsequent interaction with 
the slope. A solitary wave of depression in a two-layered system incident on 
slope-shelf topography with a turning point will scatter into a packet of oscillatory 
waves on the shelf from which one or more solitary waves of reversed polarity may 
asymptotically separate from the packet (Djordjevic & Redekopp 1978 ; 
Knickerbocker & Newel1 1980; Helfrich et al. 1984). In these experiments with a slope 
that intersects the interface, the scattering process is interrupted and the scattered 
waves are forced to propagate up the slope. The experiments showed that breaking 
and vertical mixing always occur, leading to the formation of boluses with cores of 
mixed fluid, particularly for the first few boluses which are largest and most intense. 
The multiple boluses that emerge on the slope correspond qualitatively to the wave 
crests that would form the scattered packet. Even in the absence of breaking and 
mixing the runup of multiple scattered waves, or laminar surges, is expected. It was 
shown that the number of boluses generated increases as h is decreased (see figure 9). 
The numerical studies of solitary waves with slope-shelf geometry showed that the 
number of solitary waves which emerge on the shelf increases as h decreases (Helfrich 
et al. 1984). It should be emphasized that the boluses are not positive solitary waves, 
just that the behaviour is similar, indicating the role of topographic scattering in the 
production of multiple boluses. 

WW observed that wave overturning and breaking did not occur for the first wave 
incident on the slope. Breaking was initiated by the interaction of an incident wave 
with the backflow produced by the shoaling of the preceding solitary wave. A single 
incident solitary wave of elevation may not overturn and break, but simply surge up 
the slope with little mixing. In the present experiments, all incident waves 
experienced at  least interfacial shearing instabilities, and usually strong overturning. 
The backflow that WW found was necessary to produce significant mixing may be 
provided in this case by the rapid offshore flow of lower-layer water that occurs as 
the front face of the incident wave moves up the slope. 

The mixing efficiency inshore of the break-point of 0.15 & 0.05 is several times 
larger than the value of 0.03 that WW estimated (but did not measure) for the 
breaking of a solitary wave of elevation. The increase is certainly due to the 
generation of multiple boluses which enhance the mixing and onshore transport of 
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dense water. The efficiencies found here are comparable with the values approaching 
0.20 that Ivey & Nokes (1989) measured for monochromatic internal waves in a 
continuously stratified fluid breaking on a slope a t  the critical angle. Ivey & 
Imberger (1991) used existing experimental data to show that turbulence in a stably 
stratified fluid has flux Richardson numbers, or mixing efficiencies, of 0.20 or less. 
Scaling of the results on dissipative and turbulent mixing processes up to oceanic 
scales is difficult because of the large difference in turbulent Reynolds number 
between the laboratory and the oceanic conditions. Even with this large difference 
in scales the results suggest that the breaking and runup of internal solitary waves 
of depression will be an efficient mechanism for mixing in coastal regions. 

Cacchione & Southard (1974) have shown that shoaling internal waves are capable 
of suspending and transporting sediment. The breaking and runup of long, nonlinear 
internal waves may be a very effective mechanism for onslope sediment transport. 
The turbulent boluses, which were shown to have phase speeds comparable to the 
linear phase speed, could suspend and transport sediment up the slope where the 
larger particles would be deposited as the boluses decay. Fine particles may stay in 
suspension and be advected offshore with the mixed fluid. The production of multiple 
boluses per incident wave would enhance this process. 

This work was supported by a grant from the National Science Foundation (OCE- 
8902671). Robert E. Frazel assisted with the photography. 

Appendix A 
The KdV equation including cubic nonlinearity, variable topography and viscous 

boundary-layer dissipation has been shown by HM to give good agreement for wave 
evolution over slopeshelf topography. It is used here to estimate wave dissipation 
on a uniform slope up to the break point. For a two-layer system the extended KdV 
equation is, in dimensional form (HM), 

where 

and 

3 di-d- 
“ 1  = --3 2c0 d,d- 

3 d!+d3 
a, = 

co(d+ -d-) d+ +d- ’ 

d+ d- 
P1= - 7  

The horizontal coordinate in the inshore direction is x, 7 is the interfacial 
displacement, the phase variable 
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and t is time. Here c, is the linear phase speed given by (4), d, is the upper-layer 
depth, d-(x) is the variable lower-layer depth, v is the kinematic viscosity and w is 
the width of the tank. 

The KdV equation (A 1) is valid for long, weakly nonlinear waves over slowing 
varying topography. Furthermore, it  requires the boundary-layer thickness to be 
much less than the water depth, 

The dissipation is weak and is confined to thin laminar boundary layers. A boundary- 
layer Reynolds number based on the particle velocities ( x  ac,) is O(10). The 
experiments meet these conditions so that (A 1) is applicable. Equation (A 1)  
includes cubic nonlinearity which is the leading-order nonlinearity in some 
neighbourhood of the turning point where the coefficient of the quadratic 
nonlinearity (A 3) is zero. The dissipation is given by the integral on the right-hand 
side of (A 1) and the dissipation coefficient (A 6) includes the effects of laminar 
bottom, sidewall and interfacial boundary layers. The KdV equation assumes 
undirectional propagation and does not account for reflection. Since the theory is for 
weakly nonlinear waves it cannot predict wave breaking. However, it should give 
good estimates of dissipation up to the neighbourhood of the break point. 

To obtain an estimate of the dissipation of a solitary wave from the beginning of 
the slope up to the break point, (A 1) was integrated numerically (Helfrich et al. 
1984). The initial condition was a solitary wave of amplitude a, = -0.9, - 1.9, -2.6 
or -3.3 cm at the beginning of the slope. The parameters were set to the 
experimental conditions : (d+, w, A p l p ,  v) = (10 cm, 40 cm, 0.024, 0.01 om2 s-’), 
d- = 26 cm at the beginning of the slope, and s = 0.034, 0.050 or 0.067. The 
integration was continued up to the break point given from figure 6 for each value 
of A. The incident energy E,  was evaluated using the initial condition and the 
numerical solution for r ( t )  at the break point was used in (13) to compute E B p .  

Appendix B 
Consider a tank of length XTp initially filled with two layers, each of depth d,  with 

densities po and po + E .  Energy is put into the tank at one end creating a volume of 
mixed fluid with density po+%. A vertical gate is placed in the tank which contains 
the mixed fluid in a region X,, long. The thickness of the mixed fluid behind the gate 
is 2p. The potential energy change in the system is found from (14), with B(z) = XBp, 
to be 

The gate is then removed and the mixed fluid is allowed to spread the length of the 
tank. The new thickness of the mixed fluid 26 is 

hpBP = X B P b P z .  (B 1) 

26 = (xBP/xTP) 2pu. (B 2 )  

The increase of the potential energy of the system without the gate from the 
potential energy of the system before mixing, UTp, is 

@TP = xTP = (xkP/xTI’) &‘P29 (B 3) 

@BP = hpTPxTP/xBP. (B 4) 

where (B 2) has been used. Thus, from (B 1) and (B 3), 
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This analysis can be generalized to N layers produced by mixing with the result given 
by (B4). 
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